The Physical Chemical Characterization of the Products, Equilibria, and Kinetics of the Complex Transformations of the Antibiotic Porfiromycin

Edward R. (iarrem" ${ }^{\prime}$
Kesearch Laboratories of The Upjohn Company, Nalamazow, Michigan

Received Nowember 21, 1562

Abstract

A physicochenical characterization of the solution transformations of porfiromycin has been completed. Twelve different specific products of acidic and alkaline solution conditions have been identified spectrophotometrically, the kinetics of their transformation quantified, and many of their dissociation constants and apparent. equivalent weights determined. Conditions have been established for optimum yields of the discrete products for isolation. Differences in the biological activities of the degradation products have been observed. In light of recent structural assignments for porfiromycin, ${ }^{14}$ the postulated fused ring aziridine ${ }^{14}$ appears mandatory for bi, logical activity. This structure in porfiromycin resists alkaline attack and maintains biological activity through various alkali-induced structure modifications. However, this grmu, is higlly susceptible to acid-ratillyzed solvolysis with a concomitant loss of biological activity.

The studies on the stability of the new broad spectrum antibiotic, porfiromycin," in solution were initially designed on the patterns for the other antibiotics studied in this laboratory: fumagillin, ${ }^{3}$ streptovaricin, ${ }^{4}$ filipin, ${ }^{5}$ psicofuranine, ${ }^{6}$ streptozotocin, ${ }^{7}$ and actinospectacin. ${ }^{8}$ The purposes were to determine the stability of porfiromycin as a function of pH and buffer, compare physicochemical and biological assay procedures, and to predict the possible nature of the solution degradation and the conditions for maximum stability.

Fortunately, porfiromycin is intensely colored in solution and has an elegant ultraviolet spectrum ${ }^{2 b}$ (Fig. 1) which preliminary studies had shown to be affected by acidic and basic conditions. ${ }^{2 b}$ These spectral changes provide an optimum means of study when changes iu structures of molecules of unknown structure nust be known to establish the pharmaceutically necessary conditions for formulation and stabilization. ${ }^{4}$
However, this study of porfiromycin became more unique and extensive than anticipated. The spectra changed according to the classical kinetic laws to new spectra, which changed again to others in finite discrete steps. The acid degradation sequences gave different spectrophotometrically characterized intermediates in solution than the alkaline degradation sequences and alternation of treatments introduced even further variations.

The spectra of solutions varied with pH and permitted $\mathrm{p} K_{\mathrm{s}}$ assignments to intermediates. A complicated and elegant scheme of transformations as a function of pH could be constructed where quantitative conditions could be devised for isolation of discrete

[^0]products with maximum yield.
Some materials obtained as discrete solution degradation products were paper-chromatographed in situ, their homogeneities were established as different from porfiromycin, and they were observed to have differing biological activities.

Isolation, ${ }^{9}$ based on the observed kineties, yielded new compounds that in several instances had uniquely modified biological activity with respect to the parent compound, a phenomenon as fascinating to the micro, biologist as to the physical chemist. The kinetio treatment of the rates of spectral transformations as a function of pH and acid and base concentrations permitted assignment of functional groups to the discrete products of the degradations, even prior to analytical identification of these groups.

Identification of the similarity of products obtained by different degradative routes was possible from the observed coincidence of spectra and $\mathrm{p} K_{\mathrm{a}}$ characterization and was considered confirmed by the coincidence of further rates of degradation and their dependence on acid and base concentrations.

In addition to stability evaluation, this particular study most clearly demonstrates the efficacy of the kinetic approach in modifying chemotherapeutic agents by degradative procedures, in providing information for structure determination, and in delineating specifie details for optimum yield of discrete degradation products.

Porfiromycin is active in vitro and in vivo against a variety of Gram-positive and Gram-negative bacteria and mammalian tumor cells. ${ }^{2}$ Analytical results (m) crystalline material indicate that the antibiotic is a neutral substance, slightly soluble in water, moderatelysoluble in polar organic solvents, essentially insoluble in hydrocarbon solvents, and best fits the empirical formula $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$, molecular weight $348 .{ }^{2}$

In this paper the products of porfiromycin degradation were identified by an operational nomenclature. In this scheme porfiromycin is α and distinct spectrophotometric identities resulting from acid or basic solution degradations are represented as β, γ, and δ in their chronological order of appearance. A subscript represents the solution ($\mathrm{A}=$ acid, $\mathrm{B}=$ basic) of the distinct product. The order of B or A in the

[^1]Table I
Rate Constants for the Acid Hydrolysis of Porfiromycin ${ }^{a}$ $\left[\alpha_{A} \xrightarrow[\text { Hydrochloric Acid Molarity at } 30^{\circ}]{\mathrm{H}^{+}} \beta_{\mathrm{A}}(\mathrm{A}) \xrightarrow{\mathrm{H}^{+}} \gamma_{\mathrm{A}}(\mathrm{A}, \mathrm{A})\right]$ as a Function of

Ran	[HCl]	Temp. ${ }^{\circ} \mathrm{C}$.	$\begin{gathered} 10^{2} k \\ (\text { sec. }-1 \text {) } \\ \text { for } \\ \alpha \rightarrow \beta \end{gathered}$	$\begin{gathered} 10^{5} k \\ \text { (sec. }-1 \text {) } \\ \text { for } \\ \beta \rightarrow \gamma \end{gathered}$	$\text { Obsd. }^{b} \mathrm{pH}-\text { Calcd. }{ }^{c}$	
22	0.005	29.5	1.95	1.51	2.35	2.33
23	. 005	28.6	2.28		2.27	2.33
24	. 010	29.2	2.73	2.95	2.03	2.04
25	. 010	29.5	2.49	2.98	2.01	2.04
26	. 015	28.6	3.35		1.85	1.88
27	. 020	28.6	3.43		1.74	1.76
28	. 030	29.2	3.48	6.87	1.63	1.59
29	. 040	29.2	3.83	8.21	1.46	1.47
30	. 050	29.5	3.56	13.8	1.45	1.38
31	.100)	29.5	4.03	25.3	1.13	0.99

${ }^{a}$ Concentration ca. $15 \gamma / \mathrm{ml}$. ${ }^{b}$ Averaged from pH values of aliquots. ${ }^{c}$ Calculated pH values are determined from the mean activity coefficients, f_{HCl}, of HCl in water at 30° by $\mathrm{pH}=-\log$ $\mathrm{f}[\mathrm{HCl}] .^{11 a}$

Table II

Rate Constants for the Alkaline Hydrolysis of $\beta(\mathbf{A})^{a}$ at 30.0° as a Function of the Sodium Hydroxide

Concentration, $\beta_{\mathrm{B}}(\mathrm{A}) \xrightarrow{\mathrm{OH}^{-}} \gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{B})$			
Run	$[\mathrm{NaOH}]$	$10^{8} k\left(\mathrm{sec} .^{-1}\right)$	Calcd. ${ }^{\text {pH}}$
32	0.05	1.04	12.44
33	. 10	2.13	12.72
34	. 20	3.56	12.99
35	. 40	4.95	13.28
36	75	6.43	13.54
37	. 95	8.03	13.64

a Concentration $7.65 \mathrm{r} / \mathrm{ml}$, as based on the original porfiromycin concentration. ${ }^{b}$ Calculated from $\mathrm{pH}=\mathrm{p} K_{w}-\mathrm{pOH}$; where $\mathrm{p} K_{\mathrm{w}}=13.83$ at $30^{\circ}, \mathrm{pOH}=\log f[\mathrm{NaOH}]$, $[\mathrm{NaOH}]$ is the experimental, and f is the mean activity coefficient for NaOH at $30^{\circ} .{ }^{11 b}$
subsequent parentheses represents the sequence of basic or acid degradation.

For example, $\delta_{\mathrm{B}}(\mathrm{A}, \mathrm{B}, \mathrm{B})$ indicates that this is the third distinct product of porfiromycin degradation in basic solution from, first, acid, i.e., $\beta(\mathrm{A})$; then, second, basic $\gamma(\mathrm{A}, \mathrm{B})$; and a final degradation in basic solution, $\delta(\mathrm{A}, \mathrm{B}, \mathrm{B})$.

Experimental

T'he isolation and characterization of the porfiromycin used in these studies has been reported by Herr, et. al. ${ }^{2 b}$

Kinetic Studies. - For the studies on the acid hydrolysis, porfiromycin (α) was weighed into tared volumetric flasks, dissolved in a few drops of methanol, and diluted to volume with $\mathrm{H}_{2} \mathrm{O}$ so the resultant concentration was approximately $30 \quad \gamma / \mathrm{ml}$. This solution was then diluted $1: 1$ with varying concentrations of HCl and the resultant molarities of HCl are recorded in Table I. The porfiromycin in acid solution (α_{A}) was transferred immediately to stoppered cells and the decrease at the $363 \mathrm{~m} \mu$ maximum $\left(\alpha_{A} \rightarrow \beta_{A}\right)$ was followed on the Beckman DU'spectrophotometer using the temperature control device to maintain the solutions at ca. 30°. The transformation of $\beta_{\mathrm{A}}(\mathbf{A}) \rightarrow \gamma(\mathbf{A}, \mathrm{A})$ was followed by the loss of absorbance at the $310 \mathrm{~m} \mu$ maximum, and the rate constants for varying molarities of HCl are recorded in Table I.

When the $\alpha_{\mathrm{A}} \rightarrow \beta_{\mathrm{A}}(\mathrm{A})$ reaction was complete for the fourth run of the Table I part of the solution was diluted $1: 1$ with varying molarities of NaOH and the rates of $\beta_{\mathrm{B}}(\mathrm{A}) \rightarrow \gamma(\mathrm{A}, \mathrm{B})$ were calculated from the lose of absorbance at the $255 \mathrm{~m} \mu$ maximum. The molarities of NaOH for the resultant solutions are recorded in Table II as are the rate constants.

When the $\alpha_{\mathrm{A}} \rightarrow \beta(\mathrm{A}) \rightarrow \gamma(\mathrm{A}, \mathrm{A})$ reaction was complete (30 γ / ml of porfiromycin at 30° in $0.100 M \mathrm{HCl}$ for 17 hr .), aliquots

Fig. 1.-Typical curves of the spectral changes during the acid transformation of porfiromycin. The solution was at $30^{\circ}, \mathrm{pH}$, 3.6, $0.2 M$ acetate buffer with an initial concentration of porfiromycin of $30 \gamma / \mathrm{ml}$. The spectra were run on concentrations of $15 \mathrm{\gamma} / \mathrm{ml}$. after $1: 1$ dilution with the same acetate buffer. The solid curves represent the spectral transformation $\alpha_{A} \rightarrow \beta_{A}(A)$. The dashed curves represent the spectral transformation $\beta_{A}(A) \rightarrow$ $\gamma_{\mathrm{A}}(\mathrm{A}, \mathrm{A})$. Each curve is labeled as to the number of hr. after the start of degradation.

Table III
Rate Constants for the Alkaline Hydrolysis of $\gamma(\mathrm{A}, \mathrm{A})^{a}$ at 30° as a Fúnction of the Sodium Hydroxide

Concentration, $\gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{A}) \xrightarrow{\mathrm{OH}^{-}} \delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$		
$[\mathrm{NaOH}]$	$10^{6} k\left(\mathrm{sec} .^{-1}\right)$	Calcd. $\mathrm{pH}^{\text {b }}$
0.10	2.43	12.72
. 20	3.83	12.99
. 40	5.72	13.28
. 70	7.34	13.51

${ }^{a}$ Concentration $14 \mathrm{\gamma} / \mathrm{ml}$. as based on the original porfiromycin concentration. ${ }^{b}$ Calculated from $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}$; where $\mathrm{p} K_{\mathrm{w}}=13.83$ at $30^{\circ}, \mathrm{pOH}=-\log f[\mathrm{NaOH}],[\mathrm{NaOH}]$ is the experimental molarity, and f is the mean activity coefficient for NaOH at $30^{\circ} .^{11 \mathrm{~b}}$

Table IV
Rate Constants for the Alkaline Hydrolysis of the Triethylamine Salt of $\beta(\mathrm{B})^{a}$ at 30.1° as a Function of the Sodium Hydroxide Concentration,

Run	$\beta_{\mathrm{B}}(\mathrm{B})$	$\gamma_{B}(\mathrm{~B}, \mathrm{~B})$	$\xrightarrow{\mathrm{OH}^{-}} \delta(\mathrm{B}, \mathrm{~B}, \mathrm{~B})$	
		Caled. $\mathrm{pH}^{\text {b }}$	$\xrightarrow[\substack{\beta_{\mathrm{B}}(\mathrm{~B}) \mathrm{OB}(\mathrm{~B}, \mathrm{~B})}]{\mathrm{OH}-}$	$\underset{\substack{\gamma_{\mathrm{B}}(\mathrm{~B}, \mathrm{~B}) \\ \delta(\mathrm{B}, \mathrm{~B}, \mathrm{~B})}}{\mathrm{OH}-}$
42	0.10	12.72	2.99	0.513
43	. 20	12.99	6.64	. 601
44	. 40	13.28	14.9	. 899
45	. 60	13.45	25.4	1.05
46	1.00	13.67	57.8	1.75

${ }^{a}$ Studies conducted with $15 \gamma / \mathrm{ml}$. of triethylamine salt of $\beta(\mathrm{B}) . .^{14}{ }^{b}$ Calculated from $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}$; where $\mathrm{p} K_{\mathrm{w}}=$ 13.83 at 30° and $\mathrm{pOH}=-\log f[\mathrm{NaOH}]$, and $[\mathrm{NaOH}]$ is the experimental, and f the mean activity coefficient for NaOH at $30^{\circ} .{ }^{11 b}$
of the solution were diluted $1: 1$ with varying molarities of NaOH and the rates of $\gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{A}) \rightarrow \delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$ were calculated from the loss of absorbance at the $255 \mathrm{~m} \mu$ maximum. The molarities of NaOH for the resultant solution are recorded in Table III as are the rate constants.

The experimental procedures for the study of the alkalineinduced transformations of porfiromycin (α) and their further acidic and alkaline degradations were similar. However, as some of the intermediates, viz., $\beta(\mathrm{B})$ (triethylamine salt) and the $\gamma(\mathrm{B}, \mathrm{A})$, became available on isolation and purification, ${ }^{9}$ these compounds were used to complete the degradation sequence rather than the intermediates derived from the porfiromycin in situ. The molarities of NaOH and HCl and the observed rate constants are recorded in Tables IV, V, and VI.

Table V
Rate Constants for the Acid Hydrolysis of the 'Trimethylamine Salt of $\beta(\mathrm{B})^{a}$ at 29.5° as a Function of rhe Hydrochloric Acid Concentration, $\beta_{\mathrm{A}}(\mathrm{B}) \xrightarrow{\mathrm{H}^{+}} \gamma(\mathrm{B}, \mathrm{A})$

Ran	[HCl$]$	Caled. $\mathrm{pH}^{\text {b }}$	-10 ${ }^{3} \mathrm{k}$ (sec. ${ }^{1}$) -	
			Exptl.	Calcd. ${ }^{\text {c }}$
47	0.005	2.33	2.05	2.10
48	. 01	2.04	3.19	3.09
49	. 02	1.76	3.72	3.70
50	. 04	1.47	4.31	4.07
51	. 08	1.19	4.56	4.47
52	20	0.82	4.58	4.92

a Studies conducted with $14 \gamma / \mathrm{ml}$. of triethylamine salt of $\beta(\mathrm{B}) .{ }^{b}$ Calcd. pH values are determined from the mean activity coefficients, f_{HCl}, of HCl in water at 30° by $\mathrm{pH}=-\log f[\mathrm{HCl}) .{ }^{\text {1a }}$ ${ }^{c}$ Calcd. from $k=k_{\mathrm{H}^{+}}[\mathrm{HCl}] \times \alpha^{\prime}$ where $k_{\mathrm{H}^{+}}=1.201$. $/ \mathrm{mole} / \mathrm{sec} .$, [HCl] is as given and α^{\prime} is determined from $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}{ }^{\prime}+\log$ $\alpha^{\prime} /\left(1-\alpha^{\prime}\right)$ where $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}=2.5$.

Table VI
Rate Constants for the Alkaline Hydrolysis of
$\gamma(\mathrm{B}, \mathrm{A})^{a}$ at 30° as a Function of the Sodium Hydroxide Concentration, $\gamma_{b}(\mathrm{~B}, \mathrm{~A}) \underset{\text { Calcd. }}{\mathrm{OH}} \delta(\mathrm{B}, \mathrm{A}, \mathrm{B})$

Ruı	$[\mathrm{NaOH}!$	pH^{b}	$1^{6}{ }^{6}$ (sec. $^{-1}$)
53	0.10	12.72	2.35
54	.20	12.99	3.23
55	.40	13.28	5.62
56	.70	13.51	8.20
57	1.00	13.67	9.53

${ }^{a}$ Studies conducted with $15 \gamma / \mathrm{ml}$. of $\gamma(\mathrm{B}, \mathrm{A}) .{ }^{b}$ Calculated from $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}$; where $\mathrm{p} K_{\mathrm{w}}=13.83$ at 30° and $\mathrm{pOH}=$ $-\log f[\mathrm{NaOH}]$, and $[\mathrm{NaOH}]$ is the experimental, and the mean activity coefficient for NaOH at $30^{\circ} .{ }^{11 \mathrm{~b}}$

Potentiometric and spectrophotometric titrations were performed with the use of glass-calomel electrodes. The $\mathrm{p} K_{\mathrm{a}}$ values from the former were estimated by the pH of half-neutralization. The estimation of the $\mathrm{p} K_{\mathrm{a}}$ values by the latter method is discussed in more detail in the section on calculations.

Biological Activity of Porfiromycin and its Degradation Products. -Porfiromycin is active in vitro and in vivo against a variety of both Gram-negative and Gram-positive bacteria and mammalian tumor cells. ${ }^{2 \mathrm{a}}$ It has a high degree of toxicity. ${ }^{2 \mathrm{e}}$ On the basis of papergram bioautographs against Sarcina lutea, $\beta(B)$ and $\gamma(\mathrm{B}, \mathrm{B})$ prepared and evaluated in situ still possess biological activity. The isolated triethylamine salt of $\beta(\mathrm{B})^{9}$ preserved the Gram-negative activity but drastically reduced the Grampositive by 10 times from the original porfiromycin with n , significant change in toxicity. ${ }^{10}$ However, antitumor cell activity was reduced. The $\gamma(\overline{\mathrm{B}}, \mathrm{B})$ evaluated in situ retained biological activity. The acid degraded porfiromycin products, e.g., $\beta(\mathrm{A})$ and $\gamma(\mathrm{A}, \mathrm{A})=\gamma(\mathrm{B}, \mathrm{A})$ showed little biological activity. ${ }^{10}$

Additional experimental data and physicochemical characterizations are given in the next section.

Calculations and Results. Initial Acid Degradation of Porfiromycin. Porfiromycin has an ultraviolet spectrum which is not modified with pH except as a function of time. The ultraviolet spectrum of porfiromycin has a maximum at $363 \mathrm{~m} \mu$ with an apparent absorptivity $a=65.6$, absorbance per g. of porfiromycin per l. The absorbance at $365 \mathrm{~m} \mu$ maximum decreases under neutral or acidic conditions with new maxima appearing at $311(a=39.4)$ and $250 \mathrm{~m} \mu(a=61.6)$ at first. This comp, und, the first acid degradation product of α_{A} (porfiromycin in acidic solution), is referred to as $\beta_{\mathrm{A}}(\mathrm{A})$, i.e., in acid solution (as per subscript) and from acid degradation (as represented by the parenthesized letter). Typical curves of the transformations of ultraviolet spectra for the $\alpha_{\mathrm{A}} \rightarrow \beta_{\mathrm{A}}(\mathrm{A})$ are given in Fig. 1.

A further acidic degradation occurs as is represented by the dashed lines in Fig. 1. The maxima at 311 and $250 \mathrm{~m} \mu$ for $\beta_{A}(A)$ decrease and new maxima appear at $295(a=55.2)$ and $238 \mathrm{~m} \mu$ ($a=71.3$) for $\lambda_{A}(\mathrm{~A}, \mathrm{~A})$.
(10) (\because DeBoer, personal emmmiunication.

Fig. 2.-Typical apparent first order plots for the transformation of $\beta_{A}(A) \rightarrow \gamma_{A}(A, A)$ in acid at 30° as me:asured by the las: of the $310 \mathrm{~m} \mu$ chromophore. The initial eoncentration of porfir, mycin was $15 \gamma / \mathrm{ml}$. The ECl for the varions curves is: (0.010. $1 /$. $\mathrm{A} ; 0.050 \mathrm{M}, \mathrm{B}$; and 0.100 M , C.
'The acid transformation $\alpha_{\mathrm{A}} \rightarrow \beta_{\mathrm{A}}(\mathrm{A})$ is pseudo first order. The apparent first order rate constante and the conditions under which they were obtained are given in Table I. Similarly, the acid transformation $\beta_{A}(A) \rightarrow \gamma_{A}(A, A)$ is pseudo first order and typical plots based on the disappearance of the $\beta_{A}(\mathrm{~A})$ absorbances at the $310 \mathrm{~m} \mu$ maximum are given in Fig. 2. These curves are characteristic of all the first order plots of changes in spectrophotometric absorbance. The apparent first order rate constants and the conditions under which they were obtained are also given in Table I.

The expression for the estimation of the rate renstant k (in sec. ${ }^{-1}$) is

$$
\begin{equation*}
\log \left(A-A_{x}\right)=-k t / 2.30: 3+\text { const:unt } \tag{1}
\end{equation*}
$$

where A is the observed absorbance at time, t, and A_{∞} is the asymptotic absorbance.

The rate constant, k, can be plotted as a function of hydrogen ion molarity for both transformations. An alternative procedure: is to plot $\log k$ vs. pH as in Fig. 3 and the following empirical relations can be derived

$$
\begin{aligned}
& \text { For } \alpha_{A} \rightarrow \beta_{A}(\mathrm{~A}) a t .30^{\circ} \\
& k=0.168[\mathrm{HCl}]+1.00 \times 10^{-3} ; 0.005<[\mathrm{HCl}]<0.014 \\
& k=7.5 \times 10^{-3}[\mathrm{HCl}]+3.27 \times 10^{-3} ; 0.014<[\mathrm{HCl}]< \\
& 0.100 \\
& \quad \log k=-0.100 \mathrm{pH}-2.294,1.0<1 \mathrm{H}<2.1
\end{aligned}
$$

where $\mathrm{pH}=-\log f[\mathrm{HCl}]$ and f is the mean andivity coefficient for HCl in water. ${ }^{11 a}$

$$
\begin{align*}
& \text { For } \beta_{A} \rightarrow \gamma_{A}(A, A) \text { at } 30^{\circ} \\
& k=2.57 \times 10^{-3}[\mathrm{HCl}] \tag{5}
\end{align*}
$$

$\log k=-\mathrm{pH}-2.54$
where $\mathrm{pH}=-\log f[\mathrm{HCl}]$ and $\log k e . \mathrm{pH}$ with a slipe of nega-

[^2]tive unity for the latter plot clearly shows that the rate of β $\rightarrow \gamma$ is first order in both β and hydrogen ion concentration.

This is not so with the α to β acid transformation; the apparent hydrogen ion dependence varies as a function of the hydrogen ion concentration. Thus, the most rational mechanism is that the hydrogen ion catalysis of the protonated porfiromycin, $\alpha_{\mathrm{A}}-\mathrm{H}^{+}$, has a smaller specific rate constant than that on the nonprotonated as

$$
\begin{equation*}
k\left[\alpha_{\mathrm{A}}\right]=k_{1}\left[\mathrm{H}^{+}\right]\left[\alpha_{\mathrm{A}}\right]+k_{2}\left[\mathrm{H}^{+}\right]\left[\alpha_{\mathrm{A}}-\mathrm{H}^{+}\right] \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}>k_{2} \text { and } \alpha_{\mathrm{A}}+\mathrm{H}^{+} \stackrel{K_{\mathrm{a}}}{\longleftrightarrow} \alpha_{\mathrm{A}}-\mathrm{H}^{+} \tag{8}
\end{equation*}
$$

A full discussion of the derivation and use of equations for rates as a function of hydrogen ions (or hydroxyl ions) and the dissociation of a charged species is given in the literature. ${ }^{6 b, 7,12}$

In general, if the rate of total concentration change of a species, e. q.

$$
\begin{align*}
\mathrm{d}\left[\alpha_{\mathrm{A}}\right]_{T} / \mathrm{d} t & =\mathrm{d}\left(\left[\alpha_{\mathrm{A}}\right]+\left[\alpha_{\mathrm{A}}-\mathrm{H}^{+}\right]\right) / \mathrm{d} t \tag{9a}\\
& =-k_{1}\left[\mathrm{H}^{+}\right]\left[\alpha_{\mathrm{A}}\right]-k_{2}\left[\mathrm{H}^{+}\right]\left[\alpha_{\mathrm{A}}-\mathrm{H}^{+}\right] \tag{9b}\\
& =-k_{\mathrm{H}^{+}}\left[\mathrm{H}^{+}\right]\left\{\left[\alpha_{\mathrm{A}}\right]+\left[\alpha-\mathrm{H}^{+}\right]\right\} \tag{9c}\\
& =-k_{\mathrm{H}^{+}}\left[\mathrm{H}^{+}\right]\left[\alpha_{\mathrm{A}}\right]_{T}=-k\left[\alpha_{\mathrm{A}}\right]_{T} \tag{9~d}
\end{align*}
$$

where eq. 7 was deduced.
It can be shown ${ }^{66,7,12}$ that
$k /\left[\mathrm{H}^{+}\right]=k_{\mathrm{H}^{+}}=k_{1} /\left(1+\left[\mathrm{H}^{+}\right] / K_{\mathrm{a}}\right)+k_{2} /\left(1+K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right)$
so that the apparent first order rate constants, k, at any $\left[\mathrm{H}^{+}\right]$ can be calculated as functions of the derived bimolecular rate constants k_{1}, k_{2}; of the dissociation constant K_{a}; and of the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$where the latter is used in this paper either as $f[\mathrm{HCl}]$ or $10^{-\mathrm{pH}}$.

The $\mathrm{p} K_{\mathrm{a}}$ of the protonated group in porfiromycin may be estimated from the solid curve for the α to β transformation in Fig. 3 as ca. 1.5. The $\log k_{1}=-0.40$ may be estimated from the intercept of the tangent with slope of unity to the data at higher pH values

$$
\begin{equation*}
\log k=-\mathrm{pH}+\log k_{1} \tag{10}
\end{equation*}
$$

so that $k_{1} \sim 0.40 \mathrm{l} . / \mathrm{mole} / \mathrm{sec}$. Similarly, from the data at lower pH values it can be estimated that $k_{2} \sim 0.141 . / \mathrm{mole} / \mathrm{sec}$.

Alkaline Degradation of the First Acid Degradation Product of Porfiromycin. $\alpha \xrightarrow{\mathrm{H}^{+}} \beta(\mathbf{A}) \xrightarrow{\mathrm{OH}^{-}}(\mathbf{A}, \mathbf{B})$.-The first acid transformation product $\beta(\mathrm{A})$ has maxima at $310 \mathrm{~m} \mu$ and $250 \mathrm{~m} \mu$ and an apparent $\mathrm{p} K_{\mathrm{a}}$ by spectrophotometry of 7.0 if only one group is present. However, the spectral shifts from acid to base, although reversible and real, are not too pronounced.

Potentiometric titration of $\beta_{A}(A)$ with alkali shows inflections at 5.5 and 8.0 pH and an estimated $\mathrm{p} K_{\mathrm{a}}$ of 7.0 with an estimated equivalent weight of 314 based on the initial porfiromycin. A repeat shows an apparent $\mathrm{p} K_{\mathrm{a}}$ of 7.3 and an equivalent weight of 307 with an indication of a possible other group of $\mathrm{p} K_{\mathrm{a}} 5.1$ and equivalent weight of 643 . There is uncertainty about this latter group.

On treatment with alkali, $\beta(\mathrm{A})$ is transformed to a new chromophore $\gamma(\mathrm{A}, \mathrm{B})$ with a maximum of $298 \mathrm{~m} \mu(a=49.5)$ and with loss of the 310 and $250 \mathrm{~m} \mu$ chromophores. Typical curves of the transformations of ultraviolet spectra for the $\beta_{\mathrm{B}}(\mathrm{A}) \rightarrow \gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{B})$ are given in Fig. 4. The apparent first order rate constants for the loss of the $255 \mathrm{~m} \mu$ chromophore in alkali and the conditions under which they were obtained are given in Table II.

A plot of the apparent first order rate constant against molarity in NaOH can be characterized by two empirical equations

$$
\begin{gather*}
\beta_{\mathrm{B}}(\mathrm{~A}) \xrightarrow{k} \gamma_{\mathrm{B}}(\mathrm{~A}, \mathrm{~B}) \tag{11a}\\
k=1.88 \times 10^{-5}[\mathrm{NaOH}] ;[\mathrm{NaOH}]<0.20 M \tag{11b}\\
k=5.85 \times 10^{-6}[\mathrm{NaOH}]+3.0 \times 10^{-6} ; \quad 0.30 M<[\mathrm{NaOH}] \tag{11c}
\end{gather*}
$$

where k is in sec. ${ }^{-1}$.
However, the nonlinearity indicates a change in the degree of protonation of $\beta(\mathrm{A})$ as a function of alkali concentration. ${ }^{6 \mathrm{~b}, 7,12}$

$$
\begin{equation*}
k \beta(\mathrm{~A})_{T}=k_{1}\left[\left(\mathrm{OH}^{-}\right)\right][\beta(\mathrm{A})]+k_{2}\left[\mathrm{OH}^{-}\right]\left[\beta(\mathrm{A})^{-}\right] \tag{12}
\end{equation*}
$$

(12) L. J. Edwards, Trans. Faraday Soc., 46, 729 (1950).

Fig. 3.-Logarithm of rate constants at 30° for the acid transformations of porfiromycin, $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$, plotted as a function of pH .
where

$$
\begin{equation*}
[\beta(\mathrm{A})] \stackrel{K^{\mathrm{a}}}{\rightleftarrows}\left[\beta(\mathrm{~A})^{-}\right]+\mathrm{H}^{+} \tag{13}
\end{equation*}
$$

where a development analogous to eq. 9a-e and 10 , the specific hydrogen ion catalyzed reactions of a dissociating acid, may be made. In this case

$$
\begin{align*}
\mathrm{d}[\beta(\mathrm{~A})]_{T} / \mathrm{d} t & =\mathrm{d}\left([\beta(\mathrm{~A})]+\left[\beta(\mathrm{A})^{-}\right] / \mathrm{d} t\right. \tag{14a}\\
& =-k_{1}\left[\mathrm{OH}^{-}\right][\beta(\mathrm{A})]-k_{2}\left[\mathrm{OH}^{-}\right]\left[\beta(\mathrm{A})^{-}\right] \tag{14b}\\
& =-k_{\mathrm{OH}}-\left[\mathrm{OH}^{-}\right]\left\{[\beta(\mathrm{A})]+\left[\beta(\mathrm{A})^{-}\right]\right\} \tag{14c}\\
& =-k_{\mathrm{OH}}-\left[\mathrm{OH}^{-}\right][\beta(\mathrm{A})]_{T}=-k[\beta(\mathrm{~A})]_{T} \tag{14d}
\end{align*}
$$

where $[\beta(\mathrm{A})]_{T}$ is the total concentration of both uncharged and anionic forms and whence eq. 12 is deduced.

It can be shown ${ }^{6,7,12}$ that
$k /\left[\mathrm{OH}^{-}\right]=k_{\mathrm{OH}^{-}}=k_{1}\left(1+K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right)+k_{2} /\left(1+\left[\mathrm{H}^{+}\right] / K_{\mathrm{a}}\right)$
so that the apparent first order rate constants k at any [OH^{-}] can be calculated as functions of the derived bimolecular rate constants k_{1}, k_{2}; of the dissociation constant K_{a}; and of the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$where the latter is used in this paper either as $K_{\mathrm{w}} / f[\mathrm{NaOH}]$ or $10^{-\mathrm{pH}}=10^{-\left(\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}\right)}$.

A plot of $\log k v s . \mathrm{pH}$ is given in Fig. 5 where $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-$ pOH (Table II) and $\mathrm{pOH}=-\log f \mathrm{NaOH}$ where f is the mean activity coefficient for $[\mathrm{NaOH}],{ }^{11}$ and $\mathrm{p} K_{\mathrm{w}}=13.83$ at $30^{\circ} .{ }^{11}$ Empirically

$$
\begin{align*}
& \log k=\mathrm{pH}-18.40 ; \mathrm{pH}<13.0 \tag{15a}\\
& \log k=\mathrm{pH}-18.74 ; \mathrm{pH}>13.5 \tag{15b}
\end{align*}
$$

The $\mathrm{p} K_{\mathrm{a}}$ of $\beta(\mathrm{A})$ is estimated as 13.35 at 30° from Fig. 5 where the dashed lines represent slopes of unity. Since

$$
\begin{equation*}
\log k=\log k_{\mathrm{i}}-\mathrm{p} K_{\mathrm{w}}+\mathrm{pH} \tag{15c}
\end{equation*}
$$

where equations (15a) and (15b) are of this form, then $k_{1}=$ 2.69×10^{-5} and $k_{2}=1.23 \times 10^{-5} 1 / \mathrm{mole} / \mathrm{sec}$.

Alkaline Degradation of the Second Acid Degradation Product of Porfiromycin. $\alpha \xrightarrow{\mathrm{H}^{+}} \beta(\mathbf{A}) \xrightarrow{\mathrm{H}^{+}} \gamma(\mathbf{A}, \mathbf{A}) \xrightarrow{\mathrm{OH}^{-}} \delta(\mathbf{A}, \mathbf{A}, \mathbf{B})$. -The

Fig. 4.-Typical curves of the spectral changes of $\beta(\mathrm{A})$ on subjection to 0.05 M NaOH . The solution was at 30° and initially $15 \mathrm{\gamma} / \mathrm{ml}$. in poriiromycin. The solid curves represent the spectral transformation $\beta_{\mathrm{B}}(\mathrm{A}) \rightarrow \gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{B})$. The dashed curve represents the spectra of $\beta_{\mathrm{A}}(\mathrm{A})$, i.e., $\beta(\mathrm{A})$ in acid solution. Each curve is labeled as to the number of hours after the start of degradation.

Fig. 5.-Logarithms of rate constants at 30° plotted as a function of $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\log f[\mathrm{NaOH}]$. The dashed lines have slopes of unity. The symbols and respective transformations are O, $\beta_{\mathrm{B}}(\mathrm{A}) \rightarrow \gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{B}) ; \Theta, \gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{A}) \rightarrow \delta_{\mathrm{B}}(\mathrm{A}, \mathrm{A}, \mathrm{B}) ; \bullet, \gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{A}) \rightarrow$ $\delta_{B}(B, A, B)$.
$\gamma(\mathrm{A}, \mathrm{A})$ ultraviolet spectrum in acid is characterized by maxima at $295 \mathrm{~m} \mu(a=55.2$, a repeat gave 54.1) and $238 \mathrm{~m} \mu(a=71.3$, a repeat gave 68.1) (see Fig. 1 and 6). On the addition of alkali, this spectrum is transformed to one characterized by $255 \mathrm{~m} \mu$ ($a=70.6$, a repeat gave 68.1) and $313 \mathrm{~m} \mu(a=40.2$, a repeat gave 42.1) maxima.

Fig. 6.--Effect of pH on the spectra of a porfiromycin degradation product, $\gamma(\mathrm{A}, \mathrm{A})$, at an original porfiromycin concentration of $15 \mathrm{\gamma} / \mathrm{ml}$.
Variation of the pH of the solution of $\gamma(\mathrm{AA})$ resulted in a change in spectra between the absorptivities given above for the alkaline and acid solution forms (Fig. 6). This is a reversible phenomenon. The $\gamma_{\mathrm{A}}(\mathrm{A}, \mathrm{A})$ after adjustment to pH 11.6 and reversion to pH 2.2 demonstrated the same ultraviolet spectrum as it had initially. A plot of the logarithmic function

$$
\begin{equation*}
\log \left[A_{\mathrm{H}^{+}}-A\right] /\left[A-A_{\mathrm{OH}}\right]=\mathrm{pH}+\mathrm{p} K_{\mathrm{a}} \tag{16}
\end{equation*}
$$

against pH where A is the $255 \mathrm{~m} \mu$ absorbance of the solution at any pH and $A_{\mathrm{H}^{+}}$and $A_{\mathrm{OH}^{-}}$are the asymptotic values of the absorbances at extreme acid and alkaline conditions respectively, is given in Fig. 7. The significance of eq. 16 and such a plot is discussed in the literature. ${ }^{22,13}$ The slope of the logarithmic function $v \varepsilon . \mathrm{pH}$ approximates unity, indicating that only one functional group's dissociation or protonation affects the chromophore. The intercept, i.e., when the logarithmic function is zero, in equal to the $p K_{\mathrm{a}}$ and is 5.0 .

On treatment with alkali, the chromophore of $\lambda_{\mathrm{B}}(\mathrm{A}, \mathrm{A})$ is traneformed to a new chromophore $\delta_{\mathrm{A}}(\mathrm{A}, \mathrm{A}, \mathrm{B})$ with a maximum at 298 $\mathrm{m} \mu(a=c a .52)$ (Fig. 8), On acidification $\delta_{\mathrm{A}}(\mathrm{A}, \mathrm{A}, \mathrm{B})$ has a maximum at $285 \mathrm{~m} \mu(a=c a .48)$.
Plots of the loss of the $255 \mathrm{~m} \mu$ chromophore in alkali are apparent first order and the apparent first order rate constants and the conditions under which they were obtained are given in Table III.

A plot of the apparent first order rate constant against molarity in NaOH for $\gamma_{\mathbf{B}}(\mathrm{A}, \mathrm{A}) \xrightarrow{\underset{\sim}{s}} \delta_{\mathbf{B}}(\mathrm{A}, \mathrm{A}, \mathrm{B})$ does not pass through the origin and indicates a change in the degree of protonation of $\gamma(\mathrm{A}, \mathrm{A})$ as a function of alkali concentration, i.e.
$\left(\mathrm{A} k\left[\left.\boldsymbol{\gamma}(\mathrm{~A}, \mathrm{~A})\right|_{\mathbf{T}}=k_{1}\left[\mathrm{OH}^{-}\right][\gamma(\mathrm{A}, \mathrm{A})]+k_{2}\left[\mathrm{OH}^{-}\right]\left[\gamma(\mathrm{A}, \mathrm{A})^{-}\right]\right.\right.$
where

$$
\begin{equation*}
[\gamma(\mathrm{A}, \mathrm{~A})] \stackrel{K_{\mathrm{s}}}{\rightleftarrows}\left[\gamma(\mathrm{~A}, \mathrm{~A})^{-}\right]+\left[\mathrm{H}^{+}\right] \tag{18}
\end{equation*}
$$

This is clearly shown in Fig. 5, a plot of $\log k w s . \mathrm{pH}$ where pH has been calculated from $\mathrm{pOH}=-\log f[\mathrm{NaOH}]$ and $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}$ - pOH (Table III). The dashed lines represent the slopes of

[^3]

Fig. 7.-Determination of the $\mathrm{p} K_{\mathrm{a}}$ of $\gamma(\mathrm{A}, \mathrm{A})$ by spectrophotometry at $255 \mathrm{~m} \mu$.

Fig. 8.-Typical curves of the spectral changes representing the transformation $\gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{A}) \rightarrow \delta_{\mathrm{B}}(\mathrm{A}, \mathrm{A}, \mathrm{B})$ in 0.2 M NaOH at 30° at an original porfiromycin concentration of $15 \mathrm{\gamma} / \mathrm{ml}$.
unity and the resultant expressions are the same as for $\beta_{\mathrm{B}}(\mathrm{A}) \rightarrow$ $\gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{B})$ as given by eq. $15 \mathrm{a}, 15 \mathrm{~b}$, and 15 c where the additional

Fig. 9.-Typical curves of the spectral changes during the initial alkaline transformations of porfiromycin. The solution was at $30^{\circ}, 0.1 \mathrm{M} \mathrm{NaOH}$, with an initial concentration of porfiromycin of $15 \gamma / \mathrm{ml}$. The dashed curves represent the spectral transformations of $\alpha_{\mathrm{B}} \rightarrow \beta_{\mathrm{B}}(\mathrm{B})$. The solid curves represent the spectral transformation of $\beta_{\mathrm{B}} \rightarrow \gamma_{\mathbf{B}}(\mathrm{B}, \mathrm{B})$. Each curve is labeled as to the number of $h r$. after the start of degradation.
$\mathrm{p} K_{\mathrm{a}}$ of $\gamma(\mathrm{A}, \mathrm{A})$ is thus estimated as 13.35 at 30°. Equations of the form of (14) are also applicable.
The estimated k_{1} and k_{2} for the specific hydroxyl ion catalyzed degradations of the non anionic and anionic moieties of both $\beta(\mathrm{A})$ and $\gamma(\mathrm{A}, \mathrm{A})$ are the same within experimental error,
This indicates that the $\beta(\mathrm{A})$ group of $\mathrm{p} K_{\mathrm{a}} 13.35$ is retained by $\gamma(\mathrm{A}, \mathrm{A})$ after acid hydrolysis of the former; that in all probability the same group is alkali degraded in $\gamma(\mathrm{A}, \mathrm{A})$ as in $\beta(\mathrm{A})$; and that the modification of $\beta(\mathrm{A})$ by acid to $\gamma(\mathrm{A}, \mathrm{A})$ does not change or modify the rate of attack by the hydroxyl ion. The $\gamma(\mathrm{A}, \mathrm{A})$ appears to be acid stable as no significant change of spectra beyond that assigned to $\gamma(\mathrm{A}, \mathrm{A})$ was observed.

Alkaline Degradation of Porfiromycin and the Appearance of Intermediates.--In alkaline solution the porfiromycin absorbance at $363 \mathrm{~m} \mu$ dramatically decreased with time and a new chromophore appeared with a $\lambda_{\max }$ at $333 \mathrm{~m} \mu$ (Fig. 9). The half-life of the porfiromycin chromophore was 55 hr . at 30° in 0.1 M NaOH . However, when an attempt was made to correlate the half-life of the porfiromycin biological activity by plate-disk assay, ${ }^{2 d}$ the biological activity was found to disappear at a much faster rate under these conditions (half-life 14 min .) than did the porfiromycin $365 \mathrm{~m} \mu$ chromophore (see Fig. 9).
When this apparent inconsistency was observed, the changes in spectra were followed carefully for the first 30 min . and a slight but significant change in chromophore was determined (Fig. 9). The $363 \mathrm{~m} \mu(a=63.8)$ maximum shifted to $360 \mathrm{~m} \mu$ ($a=67.1$) and the absorbance increased. The coincidence of the slopes and thus rates of this chromophoric enhancement with loss in biological activity was conclusively demonstrated. This is considered as the transformation of porfiromycin $\alpha_{B} \rightarrow \beta_{B}(B)$.
Initial Alkaline Degradation of Porfiromycin. $\quad \alpha_{\mathrm{B}} \rightarrow \beta_{\mathrm{B}}(\mathbf{B})$. The rate constant for $\alpha_{\mathrm{B}} \rightarrow \beta_{\mathrm{B}}(\mathrm{B})$ is $8.2 \times 10^{-4} \mathrm{sec} .^{-1}$ at 30° in 0.10 M NaOH .

The change in spectra of $\beta(\mathrm{B})$ with pH is not quite a reversible phenomenon due to the fast acid degradation of this material. The maximum in alkali ($\lambda_{\max }=360 \mathrm{~m} \mu, a=67.1$ at pH 12.4) shifts to a new maximum in acid (est. $\lambda_{\max }=333 \mathrm{~m} \mu, a=36$ at pH 2.1) which is rapidly lost with time.
The pH at which the greatest change in absorbance, A , occurs, i.e., $\mathrm{dA} / \mathrm{dpH}$ is a maximum, permits an estimate of the $\mathrm{p} K_{\mathrm{a}}$ of $\beta(\mathrm{B}), c a$. 4.3. A plot of $\log \left[\left(a_{\mathrm{HA}} C-A\right) /\left(A-A_{\mathrm{A}}-C\right)\right]$ $v s . \mathrm{pH}^{12,18}$ should have a slope of unity if only one disssociable group affects the chromophore and the $\mathrm{p} K_{\mathrm{a}}$ should be the intercept of such a plot. The C is the concentration, $a_{\mathrm{EA}_{\mathrm{A}}}$ and $a_{\mathrm{A}^{-}}$are the asymptotic absorptivities at a given wave length in acid and alkaline solutions, respectively, and A is the absorbance at this wave length at any pH . Thus $A_{A} C$ and $a_{H A} C$ are the asymptotic absorbances $A_{\mathrm{OH}^{-}}$and $A_{\mathrm{H}^{+}}$in alkaline and acid solutions, respectively. Such a plot for the absorbance at the $360 \mathrm{~m} \mu$ wave length gives a reasonably unit slope with an intercept of 4.1 which is the estimated $\mathrm{p} \tilde{K}_{\mathrm{a}}$ of $\beta(\mathrm{B})$. Repeat spectrophotometric titrations gave $\mathrm{p} K_{\mathrm{a}}$ estimates of 4.43 and 4.45.
Potentiometric titration with standard acid of the $\beta(\mathrm{B})$ triethylamine salt isolated by Schroeder ${ }^{9}$ according to the hy-

Table VII
Preparation, Kinetics, and Characterization of Products of Porfiromycin, α, Degradation in Acid and Base

$\gamma_{B}(B, B)$	i	Spectral	
$\mathrm{H}^{+} \downarrow \uparrow \mathrm{OH}^{-}$	11	Kinetic	Uncharged acid

$\gamma_{A}(B, B)$
$\begin{array}{cll}\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B}) & \mathrm{S}-1 \mathrm{I}^{e} & \text { Spectral } \\ \mathrm{H}^{+} \downarrow \uparrow \mathrm{OH}^{-} & 2-\mathrm{i}^{\sigma} & \text { Spectral }\end{array}$
$\delta_{A}(B, B, B)$
$\epsilon_{B}(B, B, B, B)$
$\epsilon_{A}(B, B, B, A)$
$O \mathrm{H}^{\cdots} \downarrow \uparrow \mathrm{H}^{+}$
$\epsilon_{B}(B, B, B, A)$
α_{A}
at. 5.5 Spectral
$\left.\begin{array}{lll} & 1.5 & \text { Kinctic } \\ \text { ra. } 1\end{array} \quad \begin{array}{l}\text { Potentiometric }{ }^{d}\end{array}\right\}$

Arnide:

X-Ray (2)
$\left.\begin{array}{ll}13.3 & \text { Finetic } \\ 7.0^{\circ} & \text { Spectral } \\ 7.0^{\circ} & \text { Potentiometric } \\ 7.33^{\circ} & \text { Potentiometric }\end{array}\right\}$

Uncharged
acid

Amine:
7.3 \quad Potentiometric
$\gamma A(A, A)=\gamma(B, A)$
13.7

Kinctic:
Uncharged
acid

$$
\begin{gathered}
\beta_{\mathrm{A}}(\mathrm{~A}) \\
0 \mathrm{H}^{-} \downarrow_{\beta_{\mathrm{B}}(\mathrm{~A})} \uparrow \mathrm{H}^{+}
\end{gathered}
$$

Kinctic
-

333
51.7
$1 \because 4$

320
$306-3 \div 0$
16.3
$1 \because 2$

Indeterminat: 7.85

200
16
$12 \cdot 1$

290

300
16
12. 0

363
(5), 6
$\because(13$
$334,344,334$ 344

311
30.4
$\because 0 i^{7}$
20
61.6
$\therefore 07$

	314	43.5	12.0
314^{f}	250	67.3	12.0
307^{f}			

307^{5}

29
238
Method of preparation ${ }^{a}$
$\alpha+\mathrm{NaOH} \rightleftharpoons \alpha_{\mathrm{B}}$ Instantaneous

$\alpha_{\mathrm{B}}+\mathrm{NaOH} \rightarrow \beta_{\mathrm{B}}(\mathrm{B}), t_{1 / 2}=0.23 \mathrm{hr}$. in
$0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{pH} 12.4)$

$\beta_{\mathrm{B}}(\mathrm{B})+\mathrm{HCl} \rightleftharpoons \beta_{\mathrm{A}}(\mathrm{B})$ Instantaneous

$\beta_{\mathrm{B}}(\mathrm{B})+\mathrm{NaOH} \rightarrow \gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B}), t_{1 / 2}=54.6$
hr. in $0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{pH} 12.4)$
$\epsilon_{\mathrm{A}}(\mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{A})+\mathrm{NaOH} \rightleftharpoons \epsilon_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{A})$ Instantaneous
$\alpha+\mathrm{HCl} \rightleftharpoons \alpha_{\mathrm{A}}$ Instantaneous

Degradation and rate dependence: ${ }^{\text {a }}$
$\mathrm{d}[\mathbf{X 1} / \mathrm{d} t=-k[\mathrm{X}]$
Kineties of degradation ${ }^{a, c}$
$\alpha_{\mathrm{B}} \xrightarrow{\mathrm{NaOH}} \beta_{\mathrm{B}}(\mathrm{B}), k\left[\alpha_{\mathrm{B}}\right]=k_{\mathrm{OH}^{-}}\left[\mathrm{OH}^{-}\right]\left[\alpha_{\mathrm{B}}\right]$
$k=8.2 \times 10^{-4}$ in 0.1 M NaOH at 30° $=6.16 \times 10^{-5}$ in borate buffer at 60° $=9.46 \times 10^{-6}$ in borate buffer at 60.6°
$\beta_{\mathrm{B}}(\mathrm{B}) \xrightarrow{\mathrm{NaOH}} \gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B}), k\left[\beta_{\mathrm{B}}(\mathrm{B})\right]=$
$k_{\mathrm{OH}-}[\mathrm{OH}-]\left[\beta_{\mathrm{B}}(\mathrm{B})\right]$
$\beta_{\mathrm{A}}(\mathrm{B}) \xrightarrow{\mathrm{HCl}} \gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{A}), k\left[\beta_{\mathrm{A}}(\mathrm{B})\right]_{T}=\alpha^{\prime} k^{\prime}$. $[\beta(\mathrm{B})]_{T}=k_{\mathrm{H}^{+}}\left[\mathrm{H}^{+}\right] \alpha^{\prime}\left[\beta_{\mathrm{A}}(\mathrm{B})\right]_{T}=k_{\mathrm{H}^{+}}$. $\left[\mathrm{H}^{+}\right]\left[\beta_{\mathrm{A}}(\mathrm{B})\right]$ where α^{\prime} is the degree of disassociation of $\beta_{\mathrm{A}}(\mathrm{B}) \mathrm{H}^{+} \rightleftharpoons \beta_{\mathrm{A}}(\mathrm{B})+$ $\mathrm{H}^{+} ; \mathrm{p} K_{\mathrm{a}}=2.5$ as calcd. from $\mathrm{pH}=$ $\mathrm{p} K_{\mathrm{a}}+\log \frac{\alpha^{\prime}}{1-\alpha^{\prime}}$, and $\beta(\mathrm{B})_{\mathrm{T}}=\beta(\mathrm{B})+$ $\beta(\mathrm{B}) \mathrm{H}^{+}$
$k=3.4 \times 10^{-5}[\mathrm{NaOH}]$ or $\log k=\mathrm{pH}-$ 18.1 where $\mathrm{pH}=-\log f[\mathrm{NaOH}]$ and $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}$
$k=1.20 \alpha^{\prime}[\mathrm{HCl}]$ where α^{\prime} is from $\mathrm{pH}=$ $\mathrm{p} K_{\mathrm{a}}+\log \frac{\alpha^{\prime}}{1-\alpha^{\prime}} ; \quad \mathrm{p} K_{\mathrm{z}}=2.5$
$\gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B})+\mathrm{HCl} \rightleftharpoons \gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{B})$ Instantaneous with almost simultaneous degradation of $\gamma_{A}(B, B)$
$\gamma_{\mathbf{B}}(\mathrm{B}, \mathrm{B})+\mathrm{NaOH} \rightarrow \delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B}), t_{1 / 2}=$ 375 hr . in 0.1 M NaOH (pH 12.4)
$\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B})+\mathrm{HCl} \rightleftharpoons \delta_{\mathrm{A}}(\mathrm{B}, \mathrm{B}, \mathrm{B})$ Instantaneous with almost simultaneous degradation of $\delta_{\mathrm{A}}(\mathrm{B}, \mathrm{B}, \mathrm{B})$
$\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B})+\mathrm{NaOH} \rightarrow \epsilon_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B})$ Significant change noted after 60 days
$\delta_{A}(B, B, B)+\mathrm{HCl} \rightarrow \epsilon_{A}(B, B, B, A)$ In-
stantaneous
hr. in $0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{pH} 12.4)$

$$
\begin{aligned}
& \gamma_{\mathrm{B}}(\mathrm{~B}, \mathrm{~B}) \xrightarrow{\mathrm{NaOH}} \delta_{\mathrm{B}}(\mathrm{~B}, \mathrm{~B}, \mathrm{~B}), k\left[\gamma_{\mathrm{B}}(\mathrm{~B}, \mathrm{~B})\right]= \\
& k_{1}[\mathrm{OH}][\gamma(\mathrm{B}, \mathrm{~B})]+k_{2}[\mathrm{OH}-]\left[\gamma(\mathrm{B}, \mathrm{~B})^{-}\right] \\
& \text {where } \gamma(\mathrm{B}, \mathrm{~B}) \rightleftharpoons \gamma(\mathrm{B}, \mathrm{~B})^{-}+\mathrm{H}^{+}
\end{aligned}
$$

$\gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{B}) \xrightarrow{\mathrm{HCl}} \delta_{\mathrm{A}}(\mathrm{B}, \mathrm{B}, \mathrm{A}),{ }^{h} k\left[\gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{B})\right]=$ $k_{\mathrm{H}^{+}}\left[\mathrm{H}^{+}\right]\left[\gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{B})\right]$
$\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B}) \xrightarrow{\mathrm{NaOH}} \epsilon_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B})$
$\delta_{A}(B, B, B) \xrightarrow{\mathrm{HCl}} \epsilon_{A}(B, B, B, A)$
$k=1.1 \times 10^{-6}[\mathrm{NaOH}] ;[\mathrm{NaOH}]>0.10$ or $\log k=\mathrm{pH}-19.4, \mathrm{pOH}>13.4$ where $\mathrm{pOH}=-\log f[\mathrm{NaOH}]$ and $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}, k_{1}=2.7 \times 10^{-6}$, k_{2} was undetermined
k and $k_{\mathrm{H}^{+}}$were of too high magnitude to determine; the irreversible degradation of $\gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{B})$ is almost instantaneous with acidification of $\gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B})^{h}$

60 days in 0.1 M NaOH

Essentially instantaneous

Possible end product
Possible end product

Possible end product

$$
\begin{aligned}
& \stackrel{\alpha_{\mathrm{A}}}{ } \xrightarrow{\mathrm{HCl}} \beta_{\mathrm{A}}(\mathrm{~A}), k[\alpha]=k_{1}\left[\mathrm{H}^{+}\right]\left[\alpha_{\mathrm{A}}\right]+ \\
& k_{2}\left[\mathrm{H}^{+}\right]\left[\alpha_{A} \mathrm{H}^{+}\right] \text {where } \alpha_{\mathrm{A}}+\left[\mathrm{H}^{+}\right] \stackrel{K_{\mathrm{A}}}{\rightleftharpoons} \\
& {\left[\alpha_{\mathrm{A}} \mathrm{H}^{+}\right]}
\end{aligned}
$$

$k=0.168[\mathrm{HCl}]+1.00 \times 10^{-3} ; 0.005<$ $[\mathrm{HCl}]<0.014$
$k=7.5 \times 10^{-3}[\mathrm{HCl}]+3.27 \times 10^{-3} ;$ $0.014<[\mathrm{HCl}]<0.100$ or $\log k=$ $-0.100 \mathrm{pH}-2.29$ where $\mathrm{pH}=-\log$ $f[\mathrm{HCl}] ; \quad 1.0<\mathrm{pH}<2.1 ; \quad K_{\mathrm{a}} \sim 1.5$; $k_{1} \sim 0.40 ; \quad k_{2} \sim 0.14$
$\alpha_{\mathrm{A}}+\mathrm{HCl} \rightarrow \beta_{\mathrm{A}}(\mathrm{A}), t_{1 / 2}=0.1 \mathrm{hr}$. in 0.01 $M \mathrm{HCl}(\mathrm{pH} 2.03 ;$

$$
\beta_{\mathrm{A}}(\mathrm{~A})+\mathrm{NaOH} \rightleftharpoons \beta_{\mathrm{B}}(\mathrm{~A}) \text { Instantaneous }
$$

$\beta_{\mathrm{A}}(\mathrm{A})+\mathrm{HCl} \rightarrow \gamma_{\mathrm{A}}(\mathrm{A}, \mathrm{A}), \mathrm{t}_{1 / 2}=6.5 \mathrm{hr} . \mathrm{in}$ $0.01 \mathrm{MHCl}(\mathrm{pH} 2)$

 litor. "All k values without subscripts refer to the pseudo first order rate of change oit the perffromycin intermediates in sec. ${ }^{-1}$; all h_{i} with subseripts are second order rate constants in $1 / \mathrm{mole} / \mathrm{sec}$. units; $[\mathrm{X}]$ is concentration of product; $j=$ antivity cocfficient: and $p K_{w}$ at $30^{\circ}=13.83 .{ }^{d}$ Titration with perchloric acid in dioxane. ${ }^{e}$ Potentiometric and spectral titration of the reaction product
drolysis conditions described herein, gave a $\mathrm{p} K_{\mathrm{a}}$ of 4.38 and an equivalent weight of 476 , and thus the free acid should have an equivalent weight of 375 . A p $K_{\text {a }}$ of 5.5 was observed in 50% etlanol. This increase in $\mathrm{p} K_{a}$ with ethanol concentration confirms the fact that the $\beta(\mathrm{B})$ is uncharged in the acid form since $\mathrm{p} K_{\mathrm{a}}$ values of uncharged acid generally increase with lowering of the dielectric.

Second Alkaline Transformation, $\beta_{\mathrm{B}}(\mathbf{B}) \rightarrow \gamma_{\mathbf{B}}(\mathbf{B}, \mathbf{B})$.-The subsequent relatively slow decrease of the $360 \mathrm{~m} \mu$ maximum ($a=67.1$ at pH 12.4) in alkali with the appearance of a $330 \mathrm{~m} \mu$ maximum ($a=51.7$ at pH 12.4) is attributed to $\beta_{\mathrm{B}}(\mathrm{B}) \xrightarrow[\underset{\sim}{k}]{\gamma_{\mathrm{B}}-}$ (B,B) (Fig. 9). The pertinent rate data for the apparent first (rder loss of the $360 \mathrm{~m} \mu$ chromophore under the influence of alkali for the triethylamine salt of $\beta(\mathrm{B})$ are summarized in Table IV.

A plot of the apparent first order rate constant, k in sec. ${ }^{-1}$, against sodium hydroxide concentration passes through the rrigin and indicates that no dissociating group modified the bimolecularity of the hydroxyl ion attack on β (B), i.e.

$$
\begin{equation*}
\mathrm{d}[\beta(\mathrm{~B})] / \mathrm{d} t=k[\beta(\mathrm{~B})]=k_{\mathrm{XaOH}}[\beta(\mathrm{~B})][\mathrm{NaOH}] \tag{19}
\end{equation*}
$$

where $k=3.44 \times 10^{-5}[\mathrm{NaOH}]$ and $k_{\mathrm{NaOH}}=3.44 \times 10^{-5} 1 . / \mathrm{ml}$, le/ sec:

An alternative estimate of the bimolecular rate constant, $k_{0, \mathrm{f}}$ can be obtained from a plot of $\log k v s . \mathrm{pH}$ where pH has been calculated from $\mathrm{pOH}=-\log f\left[\mathrm{OH}^{-}\right]$and $\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH}$ (see Table IV). The slope is close to unity and

$$
\begin{equation*}
\log k=\mathrm{pH}-18.1=\mathrm{pH}+\log k_{\mathrm{OH}}-\mathrm{p} K_{\mathrm{w}} \tag{20}
\end{equation*}
$$

and since $\mathrm{pK}_{\mathrm{w}}=13.83$ at $30^{\circ}, k_{0 \mathrm{H}}=3.2 \times 10^{-5} \mathrm{I} . / \mathrm{mole} / \mathrm{sec}$., which agrees well with the value calculated for $k_{\mathrm{NO} \mathrm{OH}}$.
Variation of pH has a decided effect on the spectrum of $\gamma(\mathrm{B}, \mathrm{B})$:as is shown in Fig. 10. Adjustment of pH below 10 gives a spectrum that changes rapidly with time so that a spectrophotometrie estimate of a possible $\mathrm{p} K_{\mathrm{a}}$ is difficult to obtain. However, if spectra are run as a function of time at a given pH and absorbance values linearly extrapolated to time zero, a series of curves are produced that should approximate the undegraded γ (B,B) at the several pH values. These extrapolated spectra are plotted in Fig. 10. At the lower pH values of 5.08 and 4.27 , the error in this techniqne is most noticeable in that the maximum attributed
to $\delta_{\mathrm{A}}(\mathrm{B}, \mathrm{B}, \mathrm{A})$ at $295 \mathrm{~m} \mu$ starts to appear. However, al $1, K_{n}$ c:lln be estimated as ca. 7.0 where (d absorbance) $/(\mathrm{lpH}$) is an : m parent maximum.

Third Alkaline Transformation, $\gamma_{\mathrm{B}}(\mathbf{B}, \mathbf{B}) \rightarrow \delta_{\mathrm{B}}(\mathbf{B}, \mathbf{B}, \mathbf{B})$--Thc $330 \mathrm{~m} \mu$ maximum of $\gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B}), a=51.7$ at pH 12.4, slowly d $\cdot-$ (reases and shifte to $320 \mathrm{~m} \mu, a=16.3$ at pH 12.4 (Fig. 11). The pertinent rate data for the apparent first order transformation $\gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B}) \stackrel{k}{=} \delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B} . \mathrm{B})$ on the basis of the lnss of $330 \mathrm{~m} \mu$ maximum are summarized in Table III.

The plot of the apparent first order rate constants, k in ser. ${ }^{-1}$, against sodium hydroxide concentration does not pass through the origin. This differs from the alkaline hydrolysis of $\beta(B)$ and indicates that the rates of alkaline hydrolysis of γ (B,B) arc affected by a dissociating group. An empirical equation slowing the sodium hydroxide concentration dependence is

$$
\begin{equation*}
k=1.1 \times 10^{-6}[\mathrm{NaOH}] ;[\mathrm{NaOH}]>0.10 \tag{21}
\end{equation*}
$$

 of $>(B, B)$ varies widely from a slope of unity and thus implies that $\gamma(B, B)$ has a $p K_{\text {a }}$ co. 11 which may be attril, uted to :m micharged acid which does nut significently affect the ehronmplare in dissociation so th:it
where

$$
\begin{equation*}
[\gamma(13,13)] \stackrel{\kappa_{a}}{\longleftrightarrow}\left[\gamma(13,13)^{-}\right]+1^{\prime} \tag{O}
\end{equation*}
$$

and

$$
\log k=\mathrm{p}, \mathrm{H}-19.4 ; \mathrm{pOH}>13.4
$$

si, that $k_{2} \sim 2.7 \times 10^{-5}$. The data are inadequate for the rstimation of $\mathrm{kg} k$ at $\mathrm{p}, \mathrm{OH}<13.4$ and thus k; is undetermined.

Variation of pH h:ss a decided effect on the spertrum of $\delta_{\mathrm{B}}-$ ($\mathrm{B}, \mathrm{B}, \mathrm{B}$). In alkaline solution, $\delta_{3}(\mathrm{~B}, \mathrm{~B}, \mathrm{~B})$ hats a broad maximum at pH 12.16 at $305-320 \mathrm{~m} \mu$, $a=1 \mathrm{G}, 3$. The shoulder at $330 \mathrm{~m} / \mathrm{m}$ may be due to $\gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B})$ impurity: Addition of acid to pH 2 ? :nd immediate readjustrment to p H 12 gives a spectrum with a lass in absorbance at the $320-360 \mathrm{~m} \mu$ region; the maximum is new sham.

$$
\left.\begin{array}{l}
\gamma_{\mathrm{A}}(\mathrm{~A}, \mathrm{~A})+\mathrm{NaOH} \rightleftharpoons \gamma_{\mathbf{B}}(\mathrm{A}, \mathrm{~A}) \text { Instan- } \\
\text { taneous } \\
\gamma_{\mathrm{A}}(\mathrm{~B}, \mathrm{~A})+\mathrm{NaOH} \rightleftharpoons \gamma_{\mathbf{B}}(\mathrm{B}, \mathrm{~A}) \text { Instan- } \\
\quad \operatorname{taneous}
\end{array}\right\}
$$

$\beta(\mathrm{B})+\mathrm{HCl} \rightarrow \gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{A}), t_{1 / 2}=0,1 \mathrm{hr} . \mathrm{in}$ 0.01 M HCl

$$
\begin{gathered}
\underset{\mathrm{B}}{ }(\mathrm{~A}, \mathrm{~A}) \xrightarrow{\mathrm{NaOH}} \delta_{\mathrm{B}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B}) k\left[\gamma_{\mathrm{B}}(\mathrm{~A}, \mathrm{~A})\right]= \\
k_{1}\left[\mathrm{OH}^{-}\right][\gamma(\mathrm{A}, \mathrm{~A})]+k_{2}\left[\mathrm{OH}^{-}\right]\left[\gamma\left(\mathrm{A}, \mathrm{~A}^{-}\right)\right] \\
\text {where } \gamma(\mathrm{A}, \mathrm{~A}) \underset{K_{\mathrm{a}}}{\rightleftarrows} \gamma\left(\mathrm{~A}, \mathrm{~A}^{-}\right)+\mathrm{H}^{+} \text {where }
\end{gathered}
$$

$$
\gamma(\mathrm{A}, \mathrm{~A})=\gamma(\mathrm{B}, \mathrm{~A}) ; \quad \delta(\mathrm{A}, \mathrm{~A}, \mathrm{~B})=\delta(\mathrm{B}, \mathrm{~A}, \mathrm{~B})
$$

Stable in acid
$\log k=\mathrm{pH}-18.4 ; \mathrm{pH}<13.6$
$\log k=\mathrm{pH}-18.83 ; \mathrm{pH}>13.5$
where $\mathrm{pOH}=-\log f \mathrm{NaOH}$ and $\mathrm{pH}=$
$\mathrm{p} K_{\mathrm{w}}-\mathrm{pOH} ; \quad K_{\mathrm{a}} \sim 13.3 ; \quad k_{1}=2.69$
$\times 10^{-5} ; k_{2}=1.23 \times 10^{-5}$

```
\(\left.\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{A}, \mathrm{B})\left(=\delta_{\mathrm{B}}(\mathrm{A}, \mathrm{A}, \mathrm{B})\right)+\mathrm{HCl} \rightleftharpoons\right)\)
    \(\delta_{A}(\mathrm{~B}, \mathrm{~A}, \mathrm{~B})\left(=\delta_{\mathrm{A}}(\mathrm{A}, \mathrm{A}, \mathrm{B})\right)\) Instantane-
    ous
\(\gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{A})\left(=\gamma_{\mathrm{A}}\left(\mathrm{A}_{1} \mathrm{~A}\right)\right)+\mathrm{NaOH} \rightarrow\)
    \(\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{A}, \mathrm{B})\left(=\delta_{\mathrm{B}}(\mathrm{A}, \mathrm{A}, \mathrm{B})\right) t_{1 / 2}=82\)
    hr , in 0.1 M NaOH
\(\beta(\mathrm{A})+\mathrm{NaOH} \rightarrow \gamma(\mathrm{A}, \mathrm{B}) \mathrm{t}_{1 / 2}=91 \mathrm{hr}\).
    in 0.1 M NaOH
\(\gamma_{\mathrm{B}}(\mathrm{A}, \mathrm{B})+\mathrm{HCl} \rightleftharpoons \gamma_{\mathrm{A}}(\mathrm{A}, \mathrm{B})\) Instantane-
    ous
```

$\gamma_{A}(\mathrm{~A}, \mathrm{~B})=\delta_{\mathrm{A}}(\mathrm{B}, \mathrm{A}, \mathrm{B}) \xrightarrow{\mathrm{HCl}} \delta_{\mathrm{A}}(\mathrm{A}, \mathrm{A}, \mathrm{B})=$ $\epsilon_{A}(B, A, B, A)=\epsilon_{A}(A, A, B, A)$ Instantaneous $<\mathrm{pH} 4$

Fig. 10.-Wffect of pH change on the instantaneous spectra of the second alkaline degradation product of porfiromycin, $\gamma(\mathrm{B}, \mathrm{B})$ at 30°, The concentration based on the original triethylamine salt of $\beta(\mathrm{B})$ was $16 \gamma / \mathrm{ml}$. Each spectral curve is labeled with the pH of the solution.

Fig. 11.-Typical curves of the spectral changes during the third alkaline transformation of porfiromycin, $\quad \gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{B}) \rightarrow$ $\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{B})$. The solution was at $30^{\circ}, 0.1 \mathrm{M} \mathrm{NaOH}$ with an initial concentration of the triethylamine salt of $\beta(B)$ of $15 \gamma / \mathrm{ml}$. Each curve is labeled as to the number of hr. after the start of the degradation.

Fig. 12.-Typical curves of the spectral changes of $\beta(\mathrm{B})$ in $0.01 M \mathrm{HCl}$ at $30^{\circ}, \beta_{\mathrm{B}}(\mathrm{B}) \rightarrow \gamma_{\mathrm{A}}(\mathrm{B}, \mathrm{A})$. The initial concentration as porfiromycin was $14 \gamma / \mathrm{ml}$. Each curve is labeled as to the number of min. after the start of the degradation. The dashed curve is the spectrum of $\beta_{\mathrm{B}}(\mathrm{B})$ in alkaline solution.

Fig. 13.-Effect of pH change on the spectra of the acid degraded first alkaline degradation product of porfiromycin, $\gamma(\mathrm{B}, \mathrm{A})$. The concentration of this material was $14 \gamma / \mathrm{ml}$. Each spectral curve is labeled with the pH of the solution.
from the titration of isolated $\gamma(\mathrm{B}, \mathrm{A})$. There were no differences in the infrared spectra. In alkaline solution $\gamma(\mathrm{B}, \mathrm{A})$ and $\gamma(\mathrm{A}, \mathrm{A})$ are purple; in acid solution they are both yellow. The spectra of $\gamma(\mathrm{B}, \mathrm{A})$ as characterized by maxima at $312 \mathrm{~m} \mu$ and $255 \mathrm{~m} \mu$ in alkali are transformed by alkali to a spectrum of $\gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{A}, \mathrm{B})$ with a maximum at $298 \mathrm{~m} \mu, a=45.2$ at pH 12.45 (Fig. 14). This spectral transformation is coincident with that of $\gamma_{B}(A, A)$ to $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$ (Fig. 8). The rate constants and conditions for the $\gamma(\mathrm{B}, \mathrm{A}) \xrightarrow{\mathrm{OH}} \cdot \delta(\mathrm{B}, \mathrm{A}, \mathrm{B})$ are given in Table VI for the apparent first order transformation as based on the loss of the $255 \mathrm{~m} \mu$ chromophore.

The dependence of the log rate constant, k, on pH is shown in Fig. 5. This dependency is coincident with that of $\gamma(\mathrm{A}, \mathrm{A}) \xrightarrow{k}$ $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$, eq. 15,17 , and 18 . It is thus strongly indicated that $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$ and $\delta(\mathrm{B}, \mathrm{A}, \mathrm{B})$ are the same compound and thus $\gamma(\mathrm{A}, \mathrm{A})$ and $\gamma(B, A)$ are the same compound. Also, the $\gamma(A, B)$ has spectra similar to $\delta(\mathrm{B}, \mathrm{A}, \mathrm{B})$ and $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$ so that all three of these products may be considered as similar.

The spectrum of the degradation intermediate $\delta(\mathrm{B}, \mathrm{A}, \mathrm{B})=$ $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})=\gamma(\mathrm{A}, \mathrm{B})$ shows a shift with pH from $295 \mathrm{~m} \mu(\mathrm{pH}$ 12.5) to $290 \mathrm{~m} \mu(11.9 \mathrm{pH})$ and a slight shift at pH 2.4 to $285 \mathrm{~m} \mu$ These phenomena indicate a $\mathrm{p} K_{\mathrm{a}} c a .12 .2$ by spectra and possible $\mathrm{p} K_{\mathrm{a}} c a$. 3-5. There were indications of irreversible reaction in that neutralization to $\mathrm{pH} 10-12$ of the acidified material did not completely restore the $\gamma_{B}(B, A, B)$ spectrum.

Acid Degradation of the Second Alkaline Degradation Product
$\gamma(\mathbf{B}, \mathbf{B}) \rightarrow \delta(\mathbf{B}, \mathbf{B}, \mathbf{A})$. - This reaction goes extremely fast so that the $\gamma(\mathrm{B}, \mathrm{B})$ chromophore is irreversibly changed on acidification or
even on adjustment of the solution to neutrality. The $\gamma_{\mathbf{B}}(B, B)$ maximum of $333 \mathrm{~m} \mu$ become the $\delta_{\mathrm{A}}(\mathrm{B}, \mathrm{B}, \mathrm{A})$ maxima of $295 \mathrm{~m} \mu$ ($a=40.5$) and $238 \mathrm{~m} \mu(a=45.1)$ at pH 2.4 . In alkali the spectra of $\delta_{\mathrm{B}}(\mathrm{B}, \mathrm{B}, \mathrm{A})$ shift to maxima at $312 \mathrm{~m} \mu(a=36.7)$ and 255 $\mathrm{m} \mu(a=47.8)$. The greatest change in absorbance with pH occurs at pH ca. 5.0 so that this is a good estimate of $\mathrm{p} K_{\mathrm{a}}$. Although the absorptivities which are based on the concentration of the original porfiromycin are not quite the same for $\delta(\mathrm{B}, \mathrm{B}, \mathrm{A})$ and $\gamma(\mathrm{B}, \mathrm{A})=\gamma(\mathrm{A}, \mathrm{A})$, yet the positions and pH shifts of the maxima are the same. The estimated $\mathrm{p} K_{\mathrm{a}}$ are the same. It is possible that these compounds may be very similar in their fundamental chromophore.

The Products of Porfiromycin Degradation. - A complete tabulation of the distinct porducts of porfiromycin degradation in solution is listed in Table VII. This table also gives the reversible equilibria due to dissociation of prosthetic groups, the estimated $\mathrm{p} K_{\mathrm{a}}$ of these groups as obtained by spectrophotometric and potentiometric titration of the products isolated or as obtained in situ, the estimated molecular weights, and the spectral characteristics of the compounds. In addition, the mode of degradation and its rate dependence are given as well as quantitative empirical and kinetic expressions that permit calculation of first order rates of transformations as functions of pH and catalytic species.

Discussion

Subsequent to these studies and the analysis of the transformations reported in Table VII, the structure, I (Fig. 15) was assigned to porfiromycin, $\alpha, \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}$ (molecular weight 348) ${ }^{\text {2b }}$ by Webb, et al. ${ }^{14}$
The lack of a spectrophotometrically or potentiometrically observed $\mathrm{p} K_{\mathrm{a}}$ in aqueous solution for porfiromycin ${ }^{2 b}$ implies that the 7 -amino group and the 1,2 -fused ring aziridine are nontitratable. ${ }^{15}$ The mild acid hydrolysis of porfiromycin, $\alpha \xrightarrow{H} \beta(\mathrm{~A})$, in the light of the assignment of structure I to porfiromycin is reasonably assigned to the transformation of structure I to II, $\beta(\mathrm{A}), \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$ (mol. wt. 334). Thus, the fused ring aziridine group 1, 1a, 2 of I is the group titratable in glacial acetic acid and in dioxane (see Table VII) with perchloric acid. ${ }^{15}$ Since it is the group reactive to mild acid hydrolysis to II, the kinetically observed $\mathrm{p} K_{\mathrm{a}} 1.5$ (Fig. 3) is readily assignable to the aziridine nitrogen in $I{ }^{15}$
The shift of the absorption maximum $363 \mathrm{~m} \mu$ of I to $311 \mathrm{~m} \mu$ of II (Fig. 1) is equivalent to that given for mitomycin A to apo-mitomycin A, from $320 \mathrm{~m} \mu$ to 285 $\mathrm{m} \mu_{1}$ on mild acid hydrolysis. This latter transformation has also been assigned to solvolysis of the aziridine ring and the loss of the $9 a-m e t h o x y l .{ }^{14 a}$ The difference between the wave lengths of the maxima of apo-

[^4]

Fig. 14.-Typical curves of the spectral changes of $\gamma(\mathrm{B}, \mathrm{A})$ in 0.20 M NaOH at $30^{\circ}, \gamma_{\mathrm{B}}(\mathrm{B}, \mathrm{A}) \rightarrow \delta_{\mathrm{B}}(\mathrm{B}, \mathrm{A}, \mathrm{B})$. The initial concentration as $\gamma(\mathrm{B}, \mathrm{A})$ was $15 \gamma / \mathrm{ml}$. Each curve is labeled as to the number of hr. after the start of the degradation.
mitomycin $A,{ }^{142} 285 \mathrm{~m} \mu$ and $232 \mathrm{~m} \mu$, is similar to the difference between the absorption maxima of $\beta(\mathrm{A})_{1}$ $311 \mathrm{~m} \mu$ and $250 \mathrm{~m} \mu$, and the respective absorptivities of apo-mitomycin A and β (A) (Fig. 1 and Table VII) are of the same magnitudes.

The fact that the potentiometrically titratable group of $\mathrm{p} K_{\mathrm{a}} 7$ of $\beta(\mathrm{A})$ (II) does not give large spectral changes during the titration (Fig. 4) is consistent with the assignment of the methylamine group at positions 1 or 2 in II and that it is distant from the ultraviolet chromophore.

Subsequent acid hydrolysis of II, $\beta(\mathrm{A}) \xrightarrow{\mathrm{H}^{+}} \gamma(\mathrm{A}, \mathrm{A})$ can result in III. The spectral data, for $\gamma(\mathrm{A}, \mathrm{A})=$ $\gamma(\mathrm{B}, \mathrm{A})\left[\lambda_{\max }^{\mathrm{HCl}} 238 \mathrm{~m} \mu(a=70), 295 \mathrm{~m} \mu(a=5 \tilde{5}), \lambda_{\max }^{\mathrm{NaOH}}\right.$ $255 \mathrm{~m} \mu(a=70), 313 \mathrm{~m} \mu(a=41)]$ are the same as those given for IIF, the comparable degradation product of mitomycin A. ${ }^{14}$

Compound $\gamma(\mathrm{A}, \mathrm{A})=\gamma(\mathrm{B}, \mathrm{A})$ possesses an acidic and basic group of $\mathrm{p} K_{\mathrm{a}}$ values 5 and 8. Spectrophotometric titration of $\gamma(\mathrm{A}, \mathrm{A})$ showed that the chromophore was greatly affected by the ionic form of the functionality of $\mathrm{p} K_{\mathrm{a}} 5$ (Fig. 6 and 7). This would be expected if this assignment was to the phenolic hydroxyl as the acidic function at the 7 -position of III. The titration of the $\mathrm{p} K_{\mathrm{a}} 8$ had only minor effect on the chromophore, indicated by a slight displacement of the isosbestic points (Fig. 6), and this $\mathrm{p} K_{\mathrm{a}}$ can be assigned to the methylamine group at the 2 -position of III. This implies that III can exist as a zwitterion in aqueous solution. ${ }^{16}$

The slow transformation of the chromophore of $\beta(\mathrm{A})$ by alkali to $\gamma(\mathrm{A}, \mathrm{B})$ can be reconciled to the postulated structure II by assuming that alkaline solvolysis of II results in the hydrolysis of the carbamate group at

Fig. 15.-Schemes for :cidic and basic degradations of porfiromycin at 30°. The lhalf-lives, t, are in hours.
position 9 as in the case of apo-mitomycin Λ^{145} so that the resultant $\gamma(\mathrm{A}, \mathrm{B})$ is IV or some rearrangement product thereof.
(16) Since acid titration of alkaline dissolved materish, $\gamma(\mathrm{B}, \mathrm{A})=\%(\mathrm{~A}, \mathrm{~A})$, gave a significant pH rise on precipitation and alkaline titration of acid dissolved material gave a significant pH decrease on precipitation, the following mordels can be postulated to fit the assigned $\mathrm{p} K_{\mathrm{a}}$ values and these facts

It can be postulated $t l_{\text {at }}$ on alkaline titration of a to b. since the,F_{a} values arc so close, soine c results and the solution could be supersaturated with respect to d. With the incipient precipitation, a and b can coprecipitate to give d andjor d'. Thus hydrogen ions are released and the pH significantly decreased concomitantly. Similarly, on acid titration of c to b, slmme a results and c and b coprecinitate to give d and/or d '. Thus hydroxyl ings are released and the $\mathrm{p} H$ significantly increased concomitant with the incipient wrecipitation.

The slow transformation of the chromophore of $\gamma(\mathrm{A}, \mathrm{A})$ (III) to $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$ by alkali has rates and rate dependencies similar to the $\beta(\mathrm{A})$ to $\gamma(\mathrm{A}, \mathrm{B})$ transformation and implies that the same rate determining step in the transformation of the chromophore is involved in both. Also the spectra of $\delta(\mathrm{A}, \mathrm{A}, \mathrm{B})$ and $\gamma(\mathrm{A}, \mathrm{B})$, the spectrophotometric $\mathrm{p} K_{\mathrm{a}}$ values, and the shifts in spectra on acidification are similar. This information can be rationalized on the basis that $\beta(\mathrm{A})$ of structure II is readily transformed to III by alkali. However, since the spectra of II and III in alkaline solution are similar, this cannot be observed kinetically. Thus, in the alkaline transformations of both $\gamma(\mathrm{A}, \mathrm{A})$ and $\beta(\mathrm{A})$ it is actually the kinetics of III and IV that are being followed spectrophotometrically.

This thesis can find further support in the rapid alkaline transformation of porfiromycin, $\alpha \rightarrow \beta(\mathrm{B})$ where only minor spectral changes occur at $365 \mathrm{~m} \mu$ (Fig. 9). The resultant product $\beta(\mathrm{B})$ is a salt-forming acid and would be consistent with V, the product of I by solvolytic substitution of the amine at the 7 -position.

The spectral shifts of the $\beta(\mathrm{B})$ with $\mathrm{pH}\left[\lambda_{\text {max }}^{\mathrm{NaOH}} 360\right.$ $\mathrm{m} \mu(a=67), 330 \mathrm{~m} \mu(a=36), \lambda_{\max }^{\mathrm{HCl}} 295 \mathrm{~m} \mu(a=5 \overline{5})$, $238 \mathrm{~m} \mu(a=69)]$ and the $\mathrm{p} K_{\mathrm{a}} 4.4$ (5.5 in 50% ethanolwater, v. v.) are consistent with structure V. It must be noted however that in alkaline solutions the spectra of V more closely resemble the spectra of porfiromycin (I) than that of III with the similar phenate at the 7position. However in acid solutions, the spectra of V and III are nearly equivalent. The very fast acid hydrolysis of $\beta(B)$ (V) is easily associated with the solvolysis of the aziridine ring to give III $[\gamma(\mathrm{B}, \mathrm{A})=$
$\gamma(\mathrm{A}, \mathrm{A})]$ (Fig. 12). The subsequent slow alkaline hydrolysis of $\beta(\mathrm{B})$ could be assigned to the solvolysis of the carbamate at position 10 to give $\gamma(\mathrm{B}, \mathrm{B})$ which could be deduced to be VI, where the resultant spectrophotometric $\mathrm{p} K_{\mathrm{a}}$ of $c a .7$ can still be assigned to the phenolic hydroxyl.

Although the $\lambda_{\max }^{\mathrm{NaOH}}$ is shifted from $360 \mathrm{~m} \mu(a=$ 67) for $\beta(\mathrm{B})(\mathrm{V})$ to $233 \mathrm{~m} \mu(a=52)$ for $\gamma(\mathrm{B}, \mathrm{B})$ (VI) the shapes of the absorption curves and the absorptivities are similar.

The extremely fast hydrolysis of $\gamma(\mathrm{B}, \mathrm{B})$ (VI) to $\delta(\mathrm{B}, \mathrm{B}, \mathrm{A})$ (IV) on acidification of the solution can be assigned on the basis of these postulated structures to the solvolysis of the aziridine ring to give IV (with a spectrophotometric $\mathrm{p} K_{a} c a .5$ as expected) plus other rearranged products. The actual $\delta(\mathrm{B}, \mathrm{B}, \mathrm{A})$ appears to be a mixture of products.

Further alkaline solvolysis of $\gamma(\mathrm{B}, \mathrm{B})$ to $\delta(\mathrm{B}, \mathrm{B}, \mathrm{B})$ kinetically demonstrates a new $\mathrm{p} K_{\mathrm{a}}$ value of $c a .11$ absent in $\beta(\mathrm{B})$ and which could be assigned to an uncharged acid. The acid and basic forms due to this $\mathrm{p} K_{\mathrm{a}}$ did not significantly affect the chromophore of $\gamma(\mathrm{B}, \mathrm{B})$. This leads to the preference of structure VI for $\gamma(\mathrm{B}, \mathrm{B})$ rather than a hydroxymethyl at the 9 -position. $\delta(\mathrm{B}, \mathrm{B}, \mathrm{B})$ also reacted quickly on mild acidification to indicate further that the aziridine group is not readily attacked by alkali. The further alkaline hydrolysis of $\gamma(\mathrm{B}, \mathrm{B})$ so diminished the chromophoric absorptivities that more drastic structural changes should be postulated although VII is a reasonably major product.

Except for $\gamma(\mathrm{B}, \mathrm{B})$ which has been explained on other grounds, the kinetically observed $\mathrm{p} K_{\mathrm{a}} c a$. 11-13 of a weak uncharged acid was demonstrated only when these structure assignments were consistent with the presence of the secondary ethanolamine function ${ }^{14}$ assigned to positions 1 and 2 as in $\beta(\mathrm{A}), \gamma(\mathrm{A}, \mathrm{A})$, and $\gamma(\mathrm{B}, \mathrm{A})$. It is probable that this group has weak acid character.

Structure and Biological Activity.-The fascinating change of biological activity with the physicochemical transformations of porfiromycin permit definitive assignment of action. Porfiromycin (I) had both Gram-positive and Gram-negative activity. In all cases when the postulated fused ring aziridine ${ }^{14}$ may be considered intact as in porfiromycin (I), $\beta(\mathrm{B})$ (i.e., V$)$, or $\gamma(\mathrm{B}, \mathrm{B})$ (i.e., VI), antibacterial activity was retained. Modification of other portions of the molecule as in V and VI by alkali only modified the kind and degree of biological activity. For example, the replacement of the 7 -amino by a hydroxyl group reduced the Grampositive activity, whereas Gram-negative activity was retained in both $\beta(\mathrm{B})$ and $\gamma(\mathrm{B}, \mathrm{B})$. The loss of all activities can be considered concomitant with the loss of the aziridine ring on acid solvolysis.

Acknowledgments-The author is greatly indebted to Mrs. Lillian G. Snyder and Mr. Dennis J. Weber for excellent technical assistance, to Dr. G. B. Whitfield and associates for microbiological assays, and to Dr. W. Schroeder and Mr. C. DeBoer for their discussion and interest.

The Preparation and Bacteriostatic Activity of Halogenated Carbanilates

David J, Beaver, Daniel P. Roman, and Paul J. Stoffel

Organic Chemicals Division, St. Louis Research Department, Monsanto Chemical Company, St. Louis 66, Missouri
Received December 19, 1962
The preparation and in vitro bacteriostatic activity of some halogenated carbanilates against Staphylococcus
aureus is described. The relationship of chemical structure to specific activity is discussed.

The relationship of bacteriostatic activity to the chemical structure of two series of substituted carbanillides ${ }^{1}$ has been reported previously. The effect of substitution on the phenyl rings of the carbanilides was fairly well established and further investigation was directed toward replacing the urea bridge with isoteric and non similar bridges. This paper reports the series of highly active halogenated carbanilates, several of which are active in dilutions of $1-10$ million. The physical data for 107 carbanilates are given in Tables I to III which are numbered consecutively for easy cross reference with their bacteriostatic activities. Throughout this paper, the figures given under activity refer to the maximum dilution which will completely inhibit the growth in vitro of the test organism Staphylococcus aureus. The bacteriostatic test procedure is given in the Experimental part.

As reported previously, maximum activity in the halogenated carbanilides was obtained when chlorine

[^5]was introduced into the 3 - and 4-positions of one phenyl ring and the 3 -and/or 4-positions of the second ring (1) but substitution of any ortho position reduced drastically or completely suppressed activity. Since the phenyl esters of carbanilic acid may be viewed as being formed by replacing the urea bridge, $-\mathrm{NHCONH}-$, with the carbamate bridge, NHCOO-, the compounds given in Table I show, in most cases, the same specificity as was found in the urea series. The maximum activity was obtained when chlorine was introduced into the 3 and 4-positions of the carbanilic phenyl ring and the 3 - and 4 -positions of the phenyl ester ring (91). However, unlike the carbanilides, activity was lost or lowered when the phenyl ester ring was only monosubstituted in the 3 - or 4-positions (89-90),

At this point the 3,4-dichlorophenyl moiety was retained as an essential element for activity and a series of aliphatic esters was prepared.

Activity appears to improve gradually as the carbon chain increases in length, reaching a maximum and plateauing at C_{1} to C_{8}, but dropping in effectiveness

[^0]: (1) (a) College of Pharmacy, University of Florida. Gainesville. Florida: (b) Presented in part at the Medicinal Chemistry Section, National Meeting if the American Chemical Society. Los Angeles, California. April, 1963.
 (2) (a) C. De Boer. A. Dietz, N. E. Lummis, and G. E. Savage, Antimicrobial Agents Ann., 17 (1960): (b) R. R. Herr. M. E. Bergy. T. E. Eble. anid H. K. Jahnke, ibid.. 23: (c) C. Lewis. H. W. Clapp. L. E. Rhuland. and H. R. Reanies, ihid.. 27: (d) L. J. Hanka, ihid., 37; (e) J. S. Evans. E. A. Musser. and J. Gray. Antibiot. Chemotherapy. 11, 445 (1961).
 (3) (a) E. R. Garrett and T. E. Eble. J. Pharm. Sci., 43, 385 (1954): (b) T. E. Eble and E. R. Garrett. ibid., 43, 536 (1954); (c) E. R. Garrett. ibid., 43. 539 (1954)
 (4) E. R. Garrett. ibid., 48, 169 (1959).
 (i) J. E. Tingstad and E. R. Garrett. ibid., 49, 352 (1960).
 (6) (a) E. R. Garrett and L. J. Hanka, ibid.. 49, 526 (1960); (o) E. R. Garrett, J. Am. Chem. Soc., 82, 827 (1960).
 (7) E. R. Garrett. J. Pharm. Sci., 49, 767 (1960).
 (8) E. R. Garrett and G. R. Umbreit, ibid., 51, 436 (1962).

[^1]: (9) W. Schrieder, to be published

[^2]: 111) (a) H. W. Harned and 13.); ()well. "The Physicta) ("hemistry of likel. trolytic Solutions." 3rd Ed., Reinholrl Publishing Co.. New York. N. Y 1958, p. 716: (b) ibid.. p. 729.
[^3]: (13) E. R. Garrett. J. Am. Chem. Soc., 79, 3401 (1957).

[^4]: (14) (a) J. S. Webb, D. B. Cosulich, J. H. Mowat. J. B. Patrick, R. W. Broschard, W. E. Meyer, R. P. Williams, C. F. Wolf, W. Fulmor, C. Pidacks, and J. E. Lancaster, J. Am. Chem. Soc., 84, 3185 (1962); (b) J. S. Webb. D. B. Cosulich. J. H. Mowat, J. B. Patrick. R. W. Broschard, W. E. Meyer. R. P. Williams, C. F. Wolf, W. Fulmor, C. Pidacks, and J. E. Lancaster, ibid.. 84, 3187 (1962): (c) A. Tulinsky, ibid. 84, 3188 (1962).
 (15) The lack of a titrable $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ in the range 8-9, characteristic of the ethyl enimine function [C. E. O Rourke, L. B. Clapp and J. O. Edwards, ibid., 78, 2159 (1956)] would argue a priori against the presence of an aziridine group in porfiromycin. The stated half-lives of 16 hr . at 25° and 3.5 hr . at 35° for the acid hydrolysis of 2.2 -dimethylethyleneimine in 1 M HCl [V. B. Schatz and L. B. Clapp, ibid.. 77, 5113 (195̄5)] would certainly not favor the prediction of a half-life of 0.1 hr . in 0.01 M HCl at 30° for the acid hydrolysis of an aziridine which was observed for morfiromycin. Of course, it can be argued that the nature of the ring system fused to the aziridine in porfiromycin lowered the $\mathrm{p} K_{\mathrm{a}}$ of the cyclic nitrogen functionality to the $\mathrm{p} K_{\mathrm{a}} c a$. 1.5. This $\mathrm{p} K_{\mathrm{a}}$ was originally considered as possibly being an amide. However, this decreased basicity should act asainst, rather than for the observed increased rate of acid-catalyzed solvolysis of the ethyleneimine in I to the substituted ethanolamine of II. A possible explanation for the discrepancies in stability of the aziridine ring in contrast to the models may lie in the participation of the methoxyl trans to the aziridine ring in I. Notwithstanding these facts, the discussion of the text is an attem, to reconcile the data of this paper with the proposed structure (I) of porfiromyein.

[^5]: (1) D. J. Beaver. D. P. Roman, and P. J. Stoffel, J. Am. Chem. Soc., 79, 1236 (1957); J. Org. Chem., 24, 1676 (1959).

